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Abstract

This experiment aimed to measure the elementary charge e by using the Millikan Oil Drop Experiment,
which demonstrates the discrete, quantized nature of electric charge. After atomizing oil droplets and
observing their behavior between charged capacitor plates, the terminal velocities before and after applying
an electric field were measured. From these measurements, the charge of each droplet was calculated
through an analysis of the forces acting on the droplets. These charges were then shown to cluster around
discrete values, allowing a weighted-least-squares regression to be performed. With uncertainties carefully
propagated throughout the calculations, the experiment yielded a value of e = (—1.60 £ 0.25) x 107!° C,
which is in excellent agreement with the currently accepted value of e = —1.602177 x 10~° C. This result
confirms the quantized nature of electric charge and demonstrates the effectiveness of the experimental

method.

1 Introduction

The purpose of this experiment is to demonstrate the
quantum /discrete nature of electric charge, measure
the value of the elementary charge e, and correctly
propagate uncertainty throughout the calculations to
determine the uncertainty of the result.

The measurement of the elementary charge is a cor-
nerstone of modern physics, as it provides direct evi-
dence of the quantized nature of electric charge. This
experiment, first performed by Millikan and Fletcher,
was crucial in advancing our understanding of atomic
structure, and contributed to the eventual acceptance
of quantum theory.

The principles demonstrated here are directly ap-
plicable to modern technology. For example, the
quantization of electric charge is essential in fields
such as semiconductor physics, where understanding
charge carriers in devices like transistors and capaci-
tors is critical for the design of integrated circuits.

General learning goals of the experiment and
analysis include developing student independence,

increasing laboratory proficiency, and introducing
methods in data analysis and statistics.

1.1 Background

By the end of the 1890’s, much of what was known
about electricity and magnetism could be explained
on the basis that charge is continuous, and the exis-
tence of subatomic particles was not universally ac-
cepted. However, while experimenting with cathode
rays in 1897, J.J. Thompson discovered negatively
charged ”corpuscles” with a mass of about 5= that
of a hydrogen atom.

In order to further demonstrate the discrete na-
ture of electric charge, and determine the value of
the elementary charge e, Robert Millikan and Harvey
Fletcher designed and performed what is now known
as the Millikan Oil Drop Experiment. This experi-
ment, performed in 1909, earned Millikan the Nobel
Prize in Physics of 1923[5].



1.2 Methods

To accomplish the goal, an oil-drop experiment will
be performed where oil will be atomized into a fine
mist and sprayed between the parallel plates of a ca-
pacitor. The droplets will then be charged, where
discrete changes in their terminal velocities associ-
ated with discrete changes in their surface charge can
be observed after multiple separate chargings. This
concept is demonstrated in Figure 2, and a simplified
experiment setup is demonstrated in Figure 1.
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Figure 1: A simplified diagram of the experimental
setup. This demonstrates that oil will be sprayed
into a chamber, from which it will enter into a region
between two plates of a capacitor. The application
of a uniform electric field in this region will allow the
gathering of data that leads to the calculation of e.
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Figure 2: The basic concept behind the experiment.
The terminal velocity v of a charged droplet is mea-
sured before and after a voltage difference AV is ap-
plied between parallel plates. A comparison then al-
lows the charge of the droplet to be determined.
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1.3 Results

This experiment and analysis yields the following
value for the elementary charge e:

e=(—1.60+0.25) x 1071% ¢ (1)

The currently accepted value for the elementary
charge is e = —1.602177x107*° C[3]. Thus the calcu-
lated value is only 0.01 errors away from the accepted
value, in excellent agreement.

Therefore, this experiment and analysis success-
fully show that charge is quantized, and that the
methods allow for the determination of the elemen-
tary charge to within a predicted uncertainty.

2 Mathematical Analysis

The analysis shall begin with the assumption that
the oil droplets are sufficiently small such that the
following hold:

1. their small surface area will only stably hold a
small number of electrons upon being charged
through ionization of the surrounding air.

2. they have a small terminal velocity in air.
3. they are spherical and of uniform density.

4. they are dominated by the force of gravity fg,
force of drag ﬁd, and Coulomb force Fg.

The buoyant force can be ignored because the den-
sity of the displaced air is insignificant compared to
the density of oil (1.3 kg/m® versus 886 kg/m?).

The experiment apparatus allows one to bombard
the space with alpha particles. These alpha particles
knock electrons from the air molecules, allowing those
free electrons to move to the oil droplets and thereby
leaving them with a surplus of electrons.

2.1 Forces

A diagram of all of the forces acting on an oil droplet
can be seen in Figure 3.

2.1.1 Gravity: ﬁg

The gravitational force is given by ﬁg = —mgy. Be-
cause perfect spheres and uniform density are being
assumed, this becomes:
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Figure 3: The forces that are acting on the droplets.
The droplets are dominated by the Coulomb, drag,
and gravitational forces FE, Fd, F .
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Where r is droplet radius, p is oil density, and g is
gravitational acceleration (9.8 m/s?).

2.1.2 Coulomb: FE

The Coulomb force acts on our charged droplets when
there is a voltage difference between the places that
creates a uniform electric field. It is given by Fg =
QE, where Q is droplet charge and F is the electric
field.

Here a positive voltage difference is defined as the
top plate having a higher voltage, as seen in Figure 3,
thus a positive AV generates an E in the —¢ direc-
tion. The magnitude of E is given by the relationship
between AV and a uniform field, AV = Ed. There-
fore:

- - AV
Fp=QF = —QTA

(3)

Where (@ is the droplet charge, AV is the plate
voltage difference, and d is the plate separation.
Note: the droplets will likely be negatively charged
(@ < 0),s0 Fg will be in the -+ direction for positive
AV.

2.1.3 Drag: Fy

Drag is a force that opposes the movement of the
droplets due to momentum transfer with surrounding

air molecules. For a small sphere moving in a viscous
fluid, this force is given by Stokes’ Law[6]:

F, = —6mn, TV

(4)

Where 7, is the viscosity of air, r is the droplet
radius, and 7 is the droplet velocity.

However, for particles between the continuum
regime and free molecular flow regime (1ym — 15um;
the selected droplets will be 1um — 2um), a correc-
tion for non-continuum effects using the Cunningham

Correction Factor is needed[2], Fy = £, where:

(®)

Where ) is the mean free path of air, A; = 1.257
for air, Az = 0.400 for air, Az = 0.55 for air, and r is
the droplet radius.

The mean free path of air is around 64nm —
68nm[4], while the selected droplets will be 1um —
2pm in radius. This gives a value in the exponential
of Equation 5 of:

C=1+%(A1+A2e—%“)
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(6)

This shows that the exponential portion is very
insignificant, thus this analysis will take C' = 14 %.

Combining this correction factor with Stokes’ Law
gives the drag force:

- 6. |
Fa= - @V ()

Where 7, is the viscosity of air, » is the droplet
radius, A; = 1.2557 in air, A = 66nm for air, and 7
is the droplet velocity. Note: A varies between 64nm
— 68nm in air. Here it is taken to be 66nm. The
uncertainty of +2nm is insignificant relative to the
uncertainty in 7 and r.

In typical temperature ranges (-20°C — 400°C), the
viscosity of air in SI unites (Pa - s) is approximated
by[7]:

(70 = 2.791 x 107 x TO735 | 8)

Where T is the temperature in kelvins.



2.2 Calculating Droplet Radius

Because many of the equations depend on the droplet
radius, it is something that the analysis will need to
focus on. In order to calculate the radius of each
droplet, their paths will first be observed without an
applied electric field. Gravity acting on the droplets
means they will accelerate downwards {—3). Because
the force of drag opposes velocity (see Equation 7,
Fy —i7), the force of drag will increase as it accel-
erates down until the drag force exactly opposes grav-
ity. This is mechanical equilibrium, and results in a
net zero acceleration. The velocity at which equilib-
rium is reached is called the falling terminal velocity,
V¢. The forces diagram is seen in Figure 4

Figure 4: Mechanical equilibrium without an E field
gives rise to a falling terminal velocity 7y, as the only
two forces are drag (Fy) and gravity ().

Gravity and drag are the only dominant acting
forces, and because they negate each other:

—6mn.r 4 R
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(9)

Because all forces are in the X direction (7; =
v¢{), one may only consider the § components, so:

—6mn,r 4 o .
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The result is an equation quadratic in r, which can
be solved using the quadratic equation. Neglecting
the negative solution yields:
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Note: since the droplet is falling, v < 0.

2.3 Calculating Droplet Charge

To calculate the charge of a droplet after one has de-
termined vy and r, a voltage will be induced across
the capacitor plates, creating a constant electric field
E in the region between the plates. Here the analy-
sis will focus on negatively charged droplets for sim-
plicity, so in the presence of a downward E field the
droplet will rise (see Equation 3). Like in Section
2.2, the presence of drag will result in the droplet’s
forces cancelling out, yielding a rising terminal ve-
locity .. Measuring this new terminal velocity and
comparing it to the falling terminal velocity will al-
low us to calculate the charge @ of the droplet. The
forces diagram is seen in Figure 5.
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Figure 5: Mechanical equilibrium with an E field
gives rise to a rising terminal velocity 7., with the
force of drag Fy, force of gravity Fg, and Coulomb
force FE.

This mechanical equilibrium gives the following
equation:

FE+ﬁd+ﬁ =
AV _ (14)
—QTQ—nﬁr—mgﬁZOZ‘?

AV
—QT—nur—mgzo



Where « and m can be found as the coefficients
of Equations 7 and 2. Knowledge can be combined
by comparing this with the mechanical equilibrium
equation of the scenario without an E field from Sec-
tion 2.2 (Equation 10). This gives two equations:

—kvy —mg =10 (16)

—Q% —kvp—mg=0 (17)

It is know from Equation 7 that x depends on 7, so
reducing the dependence on it will reduce the amount
of uncertainty that is introduced. Because the value
of vy has already been determined for the droplet
in question, one can solve the first equation for &
and substitute that into the second equation in the
following way:

—K = ? = substitute = (18)
£

AV

Q2L mgZ —mg=0= (19)
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After using Equation 2 to expand m, we’re left with
the following equation for the charge @ of a droplet:

4 4 d Uy
@=yrmay (i)

(21)

Where d is the plate separation, AV is the voltage
difference, p is the oil density, and g is the gravita-
tional acceleration. Also note that vy < 0 and v, > 0,
therefore we will have @ < 0. This is expected be-
cause we are focusing on droplets that rise in the
presence of a downward electric field and because the
gravitational force will be weaker than the Coulomb
force.

3 Data Analysis & Uncertainty

3.1 Calculating v and its Uncertainty

Central to the entire analysis thus far is the measure-
ment of a droplet’s terminal velocity, yet so far it has

been taken for granted. In practice one will actually
be measuring the time At that it takes for a droplet
to cover some vertical distance Ay, both of which will
have some measurement error/uncertainty oy, c,.

After a measurement of At and Ay, the terminal
velocity v will be given by:

_ Ay
V=oAL

It is clear that v is affected by both the uncer-
tainty in Ay {,) and the uncertainty in At (). To
find the uncertainty in v (e, ), then, each uncertainty
must be propagated individually to see its effect on
v and then combined[1].

The uncertainty in v due to ay is given by:

(22)

1/ Ay+a Ay
T —— y _ 4
=3 ( Al At) +
1(Ay _By—oy) oy
2 \ At At At
(23)
Similarly, oy is propagated to give:
Ay-oy
T 24
O A2 — o2 (24)

Like standard deviation, uncertainty does not com-
bine linearly, rather it combines quadratically[1].
Therefore:

ay = (o)’ + (a)? (25)
- @, Ay af (26)
At?2 (A2 — o?)?
Finally, this gives the total uncertainty in »:
o2 Ay}
=\ At (A - a2 (@7)

3.2 Combining Measurements

Once a drop has been selected for observation, as
many measurements can be performed on it as are
wanted, as long as the drop is kept from colliding with



either of the plates. This can be done by switching
the plate voltage difference on and off (grounded),
making the droplet rise or fall on demand.

Additionally, as long as the droplet’s radius and
charge do not change while the measurements are
performed, the terminal velocity will remain the
same. Therefore by combining multiple measure-
ments of the same droplet (without changing r, Q),
a better value for the terminal velocity can be ascer-
tained.

Multiple measurements of the same terminal veloc-
ity can be combined in the following way[1]:

Eiwiz/i
= 28
V=S (28)
Q, = ! (29)
Y VB

Where w; = =+, and v; and a, are calculated from

each individual measurement according to Equations
22, 27.

This same technique of combining multiple mea-
surements will also be used for multiple calculations
of r for each droplet, as well as combining the cal-
culated value of e for multiple droplets into a single
final value.

3.3 Uncertainty in r

Upon viewing Equation 13, it is clear that the cal-
culated value of r depends on the falling terminal
velocity vy. Because vy is the only experimentally
determined value in the equation, it () will be the
dominant source of uncertainty.

Because of the complicated expression for » (Equa-
tion 13}, uncertainty will not be propagated forwards
and backwards like in Section 3.1. Instead, for small
., the forward and backward propagation is the fi-
nite difference approximation to the derivative, thus:

or
r S0y 30
o BVfa s ( )

Computing this provides the equation for the un-
certainty in droplet radius:

N0y,

/ 189,
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oy = —

(31)

3.4 Uncertainty in ()

The uncertainty in droplet charge will be calculated
in the same manner as uncertainty in droplet radius.
However, Equation 21 demonstrates that there are
now three dominant sources of uncertainty: «,, o, ,
and .. Because of this, the uncertainty for each
must be calculated individually and then combined
quadratically.
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Combining these individual uncertainties quadrat-
ically provides the equation for the uncertainty in
droplet charge:

d
ag = 47r7‘2pgm~

(35)
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3.5 Determining e and its Uncertainty

After taking multiple falling and rising measurements
for multiple charge states of multiple droplets, r can
be calculated for each droplet and @ for each charge
state. For this experiment two droplets were ob-
served with seven different charge states each, with
four falling and four rising measurements taken for
each charge state.

With all of the previously mentioned values cal-
culated, the value of e may be determined for each



individual droplet, where they can then all be com-
bined into a single value of e as described in Section
3.2.

When the charge values for each droplet are plotted
to an appropriate scale (107° Q), clustering occurs
due to the discrete nature of charge, with each charge
state being associated with a small integer number of
electrons n on the droplet. If sufficient charge states
are measured, it can be assumed that the two clusters
with the smallest separation in charge are separated
by a single electron, or An = 1. Otherwise, intuition
will need to be used to determine the smallest charge
that divides each state’s charge value. Each cluster
can then be labeled with the appropriate value of
electron quantity n.

This idea is more easily demonstrated by Figures
6 and 7, and is captured in the following equation:

Q: = en; (36)

Where @); is the charge value, e is the elementary
charge (the charge of an electron), and n; is the num-
ber of electrons or elementary charges.

Equation 36 follows a linear relationship of the
form y; = mz; +b. Because of this, one can per-
form a regression to fit the (n;, @;) data to a straight
line, the slope of which will be the droplet’s value
for e. A weighted least squares analysis yields the
following equations([1]:

Qi=en; +b (37)
. Eiwiziwi”iQiA_/ Biwin; Biw; Q; (38)
b= Siwin? EiwiQ; _AIEiwiniEiwiniQi (39)

Qe = \/? (40)

oy = |/ 2ind (41)

i = é (42)

A = Y0 Swin? — (Siwing)” (43)

This regression fits the data to a straight line, giv-
ing e and . for a single droplet. These independent

values of e for each droplet can then be combined
into a single value for e and o, using the method
described in Section 3.2.

The regression analysis for each droplet is shown in
Figures 8 and 9, and yields the following two values
for e:

e1 = (—1.95+056) x 107° C
ez = (—1.514+0.28) x 107 ¢

The weighted combination of these (see Section
3.2) yields a final value for the elementary charge:

le=(-1.60£025) x107° C|  (44)

3.6 Measurement Error

The two original dominant sources of error are
droplet timing and droplet displacement, as these are
the two values that are being manually measured.
These two errors are propagated through the analy-
sis to the final value of e according to the diagram in
Figure 10.

Consequently, the timing uncertainty and displace-
ment uncertainty must be determined.

To determine our timing error, we used a stopwatch
(the one used in our procedure) to measure our reac-
tion speed by attempting to stop the timer at 5.00s.
This simulates the need to stop the timer when a
droplet crosses a gridline in the viewing microscope
(Figure 1). The timing errors were recorded and then
averaged to determine a value for oy.

To determine displacement error, the oil-drop ap-
paratus manual was consulted to determine the sepa-
ration between minor gridlines in the viewing micro-
scope. This value is taken to be a,,.

4 Detailed Methods

4.1 Equipment Setup

The following is a list of the equipment used during
the experiment:



Droplet 1 Charge Clustering

Gl
Ft et | i b L
n=1
n=2
el
]
=
[N
-
e D —_—
& :
© :
£L H
5
c —_—
B —_——
A —_—— -
Y 40 35 3.0 25 ~2.0 15

Q100

Figure 6: Plot of the calculated charges for droplet 1. The error bars correspond to the uncertainty in charge.
This demonstrates the discreteness of charge with clusters, and allows the charge clusters to be labeled with

their corresponding quantity of electrons n.

Droplet 2 Charge Clustering
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Figure 7: Plot of the calculated charges for droplet 2. The error bars correspond to the uncertainty in charge.
This demonstrates the discreteness of charge with clusters, and allows the charge clusters to be labeled with
their corresponding quantity of electrons n.



Droplet 1 Linear Regression
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Figure 8: Plot of the linear regression for droplet 1. The error bars correspond to the charge uncertainty,
and the value of the slope corresponds to the value of the elementary charge e. This regression yields
er = (—1.95 £ 0.56) x 107% (. Because the charges for droplet 1 were only clustered around n = 1 and
n = 2, the individual values may be difficult to distinguish.
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Figure 9: Plot of the linear regression for droplet 2. The error bars correspond to the charge uncertainty,
and the value of the slope corresponds to the value of the elementary charge e. This regression yields
ey = (—1.51£0.28) x 1071* (.
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Figure 10: Diagram showing the flow of uncertainty
through the analysis, starting from the initial uncer-
tainty that arises due to measurement (o, ay).

Millikan oil drop apparatus: PASCO Model AP-
8210 (#P00048158)

.MJJZQ(// NS s dZ@Lg

Oil atomizer

Non-volatile oil: Squib #5597 Mineral Oil (p =
886 kg/m?)

¢ 500V DC power supply
e Digital multi-meter

¢ Digital stopwatch
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The apparatus setup can be seen in Figure 11. The
viewing microscope contains an internal grid overlay
that allows distances and positions of droplets to be
measured.

Figure 11: The setup for the oil drop apparatus.
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4.2 Procedure

A detailed description of the followed experimental
steps, as outlined in Section 1.2, is found below:

1. Select a location free of drafts and vibrations.

2. Place the apparatus on a level surface. Use the
included bubble level as a reference.

3. Disassemble the droplet viewing chamber. Mea-
sure and record the thickness of the plastic
spacer separating the plates.

4. Clean any old oil off the inside of the chamber,
the plates, and the plastic spacer.

5. Reassemble the droplet viewing chamber.
6. Focus the halogen filament.

7. Connect the DC power supply. Set it to deliver
500V between the plates.

8. Determine the chamber temperature using the
multi-meter and apparatus thermistor.

9. Darken the room.

10. Ensure the apparatus background is dark.

11. Spray oil into the chamber with the atomizer,

12. Select a droplet that falls slowly enough for ac-

curate measurement.

13. Focus the microscope onto that droplet. The
droplet can be moved up and down by grounding

and ungrounding the plates.

14. Get multiple (4) measurements of falling termi-

nal velocity while the plates are grounded.

15. Get multiple (4) measurements of rising terminal

velocity while plates are not grounded.

16. Use the apparatus ionization lever to give the

droplet a new charge.

17. Do steps 14-16 multiple times (7) for the same
droplet, resulting in multiple measured charge

states of the droplet.
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18. Do steps 11-17 for multiple (2) droplets.

An issue that was encountered multiple times was
related to the leveling of the apparatus. Multiple
suitable droplets were lost during measurement be-
cause they slowly drifted horizontally until out of
view. This was fixed by re-leveling and ensuring that
droplets fell vertically along the viewing grid before
proceeding with measurement.

5 Conclusion

5.1 Improvements

Because droplet timing and displacement are the two
largest sources of error, the improvements mentioned
will focus on reducing their uncertainty.

The lowest-tech way of reducing timing error would
be to use a high-speed camera to record the droplets
as they are rising and falling in front of the back-
ground grid. This would take human reaction speed
out of the loop.

The simplest way of reducing displacement error
would be to use a focusing reticle (the grid) in the
viewing microscope with much smaller gridline tick-
marks. However, care must be taken to not select
too small of droplets, as this would make molecu-
lar/Brownian motion a dominant source of uncer-
tainty.

5.2 Summary

As seen in Equation 44, the experiment and analy-
sis performed on two droplets gives the value of the
elementary charge as e = (—1.60 + 0.25) x 107°
C, whereas the currently accepted value is e =
—1.602177 x 10~ C. This results in the measured
value having a Z-Score of 0.01, and therefore being
in excellent agreement with conventional knowledge.

Additionally, the clustering seen in Figures 6 and
7 shows that charge is indeed quantized, such that
there is a linear relationship between different charge
states of an oil droplet (Figures 8, 9).

These results accomplish the goal of showing the
quantization of charge, measuring the elementary
charge e, and propagating uncertainty throughout

11

the analysis to determine the uncertainty associated
with the final value of e.
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